Estimating climate sensitivity using a two-zone energy balance model and satellite observations Ray Bates, Meteorology and Climate Centre, University College Dublin, Ireland Symposium in Honor of Retirement of Huug van den Dool NCWCP, March 3rd, 2017 - Oerlemans J. and van den Dool, H. M. (1978). Energy balance climate models: Stability experiments with a refined albedo and updated coefficients for infrared emission. J. Atmos. Sci., 35, 371-381. - van den Dool, H.M. (1980). Experiments with clouds in an energy balance climate model. Annalen der Meteor. (Neu Folge), 15, 87-90. - van den Dool, H. M. (1980). On the role of cloud amount amount in an energy balance model of the earth's climate. J. Atmos. Sci., 37, 939-946. #### Mauna Loa monthly mean CO₂ concentration 1958-2015 #### Daily average carbon dioxide at South Pole Climate sensitivity is the equilibrium (steady-state) change in the annual global-mean surface temperature (GMST) following a doubling of the atmospheric equivalent CO₂ concentration. In IPCC (2013), the effective radiative forcing for a doubled CO₂ concentration is given as 3.7 W m⁻². This value will be adopted here; thus, $$\Delta Q = 3.7 \text{ W } m^{-2}$$ #### Climate sensitivity estimates | | Range | Best Estimate | |-----------------------|-------------|---------------| | Charney Report (1979) | 1.5 – 4.5°C | 3.0°C | | IPCC AR4 (2007) | 2.0 – 4.5°C | 3.0°C | | IPCC AR5 (2013) | 1.5 – 4.5°C | None given | # Estimating climate sensitivity using GCMs Water vapour feedback (amplification of CO₂-induced warming by the resulting increase in atmospheric water vapour) is the primary source of global warming in GCMs. What about the real climate system? # Estimating climate sensitivity using simple energy balance models and satellite observations #### **Radiative Response Coefficient (b):** $$b = \frac{dFlux}{dT}$$ Estimates of *b* can be obtained by linearly regressing fluctuations in upward (LW+SW) radiative flux at TOA, from observations or from non-equilibrium GCM output, against fluctuations in surface temperature. ## The Zero-Dimensional Energy Balance Model (ZDM) #### The Zero-Dimensional Model (ZDM) If we take b as given by satellite observations, the ZDM expression for climate sensitivity is given by Eq. (4): $$T_{ZDM} = \frac{Q}{b}$$ ## Two-zone(tropical/extratropical) Energy Balance Models Model A (Lindzen and Choi, 2011) Model B (Bates, 1999, 2012, 2016) #### The Two-Zone Models (A and B) #### **Energy Equations for Model B** Primes refer to small perturbations about a basic equilibrium climate state (all quantities are running annual means evolving slowly on long time scales): $$c_0 \frac{dT_1}{dt} = Q_1 \quad b_1 T_1 \quad d T_1 \quad T_2$$ $$c_0 \frac{dT_2}{dt} = Q_2 \quad b_2 T_2 + d T_1 \quad T_2$$ #### **Sensitivity Analysis** The sensitivity of Model B is found by imposing a step-function forcing $$Q_1, Q_2 = Q, Q 1(t)$$ where $$Q=3.7 \text{ Wm}^{-2}$$ and taking the equilibrium solution at t = Using to denote global mean increments at equilibrium, T = T + T / 2 it is found that e.g., $$T = T_1 + T_2 / 2$$, it is found that $$T_B = 1 + X$$ T_A where $$T_A = \frac{Q}{b_1 + b_2/2}$$ $$X = \frac{1}{S_2} \frac{b_1 b_2^2}{2}$$ It is seen that X=0 and $T_B=T_A$ under two circumstances: $$b_1$$ b_2 or d Under general circumstances, X can be large and T_B and T_A can be quite different. #### **Parameter Values** Values of the tropical radiative response coefficient (b_1) are given by - (i) Satellite observations; - (ii) GCMs run in AMIP mode (fixed SST); - (iii) GCMs run in CMIP mode (SSTcalculated using a coupled ocean model) Values taken from Lindzen and Choi (2011) **Mauritsen and Stevens (2015)** **Table 1.** Linear Regression Slopes (Units: W m⁻² K⁻¹) of Anomalies in Outgoing TOA Radiation (LW, SW, and LW+SW) Against Surface Temperature in the Tropics, as Determined From Observations [(Slope)_{obs}], From AMIP GCMs [(Slope)_{AMIP}], and From CMIP GCMs [(Slope)_{CMIP}]^a | | (Slope) _{obs} | (Slope) _{AMIP} | (Slope) _{CMIP} | |---------------|------------------------|-------------------------|-------------------------| | LC11, LW | 5.3 ± 1.3 | 1.8 {-0.8, 4.4} | 3.0 {0.6, 5.8} | | LC11, SW | 1.9 ± 2.6 | -2.9 {-3.8, -0.1} | 1.2 {-3.3, 3.9} | | LC11, LW + SW | 6.9 ± 1.8 | -1.1 {-4.7, 1.0} | 4.2 {0.5, 8.1} | | MS15, LW | 4.1 ± 0.8 | 2.7 {0.8, 5.4} | 2.2 {0.2, 4.2} | | MS15, SW | -0.9 ± 0.9 | -1.4 (-4.3, 1.8) | -1.2 {-4.6, 0.8} | | MS15, LW + SW | 3.2 ± 1.0 | 1.3 {-1.1, 4.7} | 1.0 {-1.1, 3.0} | ^aThe uncertainty interval in the first column of figures is ±1 standard error; values in curly brackets in the other columns are the outer limits of the quantity in question. The slopes of *Lindzen and Choi* [2011; LC11] are evaluated using data for the oceanic part of the latitude band (20°S–20°N), while those of *Mauritsen and Stevens* [2015; MS15] are evaluated using data for the entire latitude band (20°S–20°N). #### Estimating *b*₂ It is difficult to estimate b₂ observationally from satellites because of the predominance of noise in surface temperatures over land. Lindzen and Choi (2011) assumed that b_2 is given by the Planck value corresponding to the extratropical emission temperature (249 K), based on the low specific humidity and approximately unvarying 50% cloud cover in this region; this gives $b_2 = 3.5 \text{ W m}^{-2} \text{ K}^{-1}$. Pierrehumbert [1995, Figure 2] has used a GCM radiation code to evaluate the clear-sky OLR as a function of low-level air temperature for various relative humidities. Choosing a low-level temperature characteristic of the extratropics (280 K) and the 75% RH curve, his calculations gives $b_2 \approx 2.1 \text{ W m}^{-2} \text{ K}^{-1}$. Langen and Alexeev [2005], in aquaplanet experiments using two GCMs without an iris effect, found an extratropical LW response coefficient of approximately 2 W m⁻² K⁻¹. Guided by these results, b_2 is allowed to vary in the range (2.0, 3.5) W m⁻² K⁻¹. **Figure 1.** EfCS provided by Model A (ΔT_A) and Model B (ΔT_B) as functions of the tropical radiative response coefficient (b_1) with the extratropical radiative response coefficient (b_2) set at 3.5 W m⁻² K⁻¹ and the DHT coefficient (d) set at (0, 2, 4) W m⁻² K⁻¹. Forcing: $\Delta Q = 3.7$ W m⁻². See text for further details. **Table 2.** EfCS as Given by Model B for the Mean Observational Range of b_1 and the Best Estimates of the Likely Ranges of $(b_2, d)^a$ | (b_1, b_2, d) | ΔT_B | |-----------------|--------------| | (4.1, 3.5, 2.0) | 0.977 | | (4.1, 3.5, 4.0) | 0.976 | | (5.3, 3.5, 2.0) | 0.860 | | (5.3, 3.5, 4.0) | 0.854 | | (4.1, 2.0, 2.0) | 1.279 | | (4.1, 2.0, 4.0) | 1.254 | | (5.3, 2.0, 2.0) | 1.123 | | (5.3, 2.0, 4.0) | 1.083 | ^aUnits of (b_1, b_2, d) : W m⁻² K⁻¹. Units of ΔT_B : °C. Forcing: $\Delta Q = 3.7$ W m⁻². See text for further details. Is a climate sensitivity estimate of 1°C compatible with the observed evolution of the GMST over the period of the global instrumental record? #### Annual Global Temperature (Land, Ocean, and Combined) #### RSS GLOBAL TLT TEMPERATURE ANOMALIES How Much of the Marked Warming of 2015-2016 is due to Greenhouse Gas Increase and How Much is Due to Natural Variability? ### (a) The Role of ENSO #### SST Anomaly in Nino 3.4 Region (5N-5S,120-170W) National Centers for Environmental Information / NESDIS / NOAA (b) The Current warming is much more asymmetric than is expected from the approximately symmetric CO₂ increase. ## Surface air temperature anomaly for **2016** relative to the average for 1981-2010 ## Warming Trends in the Satellite Era 1979-2014 (°C/decade) | | Conventional surface datasets (CRUTem4 and HadSST3) | Reanalysis
dataset
(Cederlöf et al.,
2016) | Satellite dataset
(lower trop;
Spencer et al.,
2015) | |--------|---|---|---| | Land | 0.26 | 0.25 - 0.27 | 0.19 | | | (surface) | (surface) | (lower trop) | | Ocean | 0.12 | 0.06 - 0.12 | 0.08 | | | (surface) | (surface) | (lower trop) | | Global | 0.16 | 0.08 - 0.11 | 0.11 | | | (surface) | (mid. trop) | (lower trop) | Cederlöf et al. (2016): The mid-tropospheric trend is similar over land and ocean. It agrees closely with the ocean surface trend. A land surface trend substantially in excess of the mid-tropospheric trend, as above, is suggestive of a problem with the land surface temperatures. Cederlöf et al. strongly suggest using tropospheric temperature trends from reanalyses in climate sensitivity studies. #### **Conclusions** - 1) A two-zone (tropical/extratropical) energy balance model of the climate system that includes inter-zone energy transport has been constructed and its properties examined. - 2) Satellite observations indicate that in the tropics the real climate system is radiatively more stable (i.e., emits more energy to space for a given surface temperature increase) than is indicated by the GCMs. - 3) Inserting the observed value of the tropical radiative response coefficient and the best estimates of the other parameters into the two-zone model gives a climate sensitivity of $\sim 1^{\circ}$ C. - 4) This value of climate sensitivity is not inconsistent with the observed global temperature record. #### <u>References</u> Bates, J.R. (2016). Estimating climate sensitivity using two-zone energy balance models. *Earth and Space Science*, **3**, 207–225, doi:10.1002/2015EA000154. Bates, J.R. (2012). Climate stability and sensitivity in some simple conceptual models. *Clim. Dyn.*, **38**, 455-473. DOI 10.1007/s00382-010-0966-0. Cederlöf, M, Bengtsson, L. and Hodges, K. (2016). Assessing atmospheric temperature data sets for climate studies. *Tellus A*, **68**, 31503, http://dx.doi.org/10.3402/tellusa.v68.31503 Lindzen, R. and Choi, Y.-S. (2011). On the Observational Determination of Climate Sensitivity and Its Implications. *Asia-Pacific J. Atmos. Sci.*, **47(4)**, 377-390, DOI:10.1007/s13143-011-0023-x Mauritsen, T. and Stevens, B. (2015). Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models. *Nature Geoscience* **8**, 346–351. Soon, W., Connolly, R. and Connolly, M. (2015). Re-evaluating the role of solar variability on NH temperature trends since the 19th century. *Earth-Science Reviews*, **150**, 409–452. http://dx.doi.org/10.1016/j.earscirev.2015.08.010"doi:10.1016/j.earscirev.2015.08.010 ## The End